All Publications

Journal Publications:

  1. G. Li, B. Song, H. L. Grimes, H. Singh, V. B. S. Prasath, N. Salomonis. scTriangulate, decision-level integration of uni- and multimodal single-cell data. Nature Communications, 2022. doi:TBA

  2. M. Shah, D. Jain, V. B. S. Prasath, K. Dufendach. Artificial intelligence in bronchopulmonary dysplasia - Current research and unexplored frontiers. Pediatric Research, 2022. doi:10.1038/s41390-022-02387-z

  3. T. A Cazares, F. W. Rizvi, B. Iyer, X. Chen, M. Kotliar, J. A. Wayman, A. Bejjani, O. Donmez, B. Wronowski, S. Parameswaran, L. C. Kottyan, A. Barski, M. T. Weirauch, V. B. S. Prasath, E. R. Miraldi. maxATAC: genome-scale transcription-factor binding prediction from ATAC-seq with deep neural networks. PLOS Computational Biology, 2022. doi:TBA

  4. N. Gaddis, J. Fortriede, M. Guo, E. E. Bardes, M. Kouril, S. Tabar, K. Burns, M. E. Ardini-Poleske, S. Loos, D. Schnell, K. Jin, B. Iyer, Y. Du, B.-X. Huo, A. Bhattacharjee, J. Korte, R. Munshi, V. Smith, A. Herbst, J. A. Kitzmiller, G. C. Clair, J. Carson, J. Adkins, E. E. Morrisey, G. S. Pryhuber, R. Misra, J. A. Whitsett, X. Sun, T. Heathorn, B. Paten, V. B. S. Prasath, Y. Xu, T. Tickle, B. J. Aronow, N. Salomonis. LungMAP portal ecosystem: Systems-level exploration of the lung. American Journal of Respiratory Cell and Molecular Biology, 2022. doi:10.1165/rcmb.2022-0165OC

  5. E. H. S. Diop, A. Ngom, V. B. S. Prasath. Signal approximations based on an nonlinear and optimal piecewise affine functions. Circuits, Systems, and Signal Processing, 2022. doi:10.1007/s00034-022-02224-y

  6. N. Salamat, A. H. Arif, M. Mustahsan, M. M. S. Missen, V. B. S. Prasath. On compacton traveling wave solutions of Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZK-BBM) equation. Computational and Applied Mathematics, 41(8), Article ID 365, December 2022. doi:10.1007/s40314-022-02082-z

  7. S. Boopathiraja, P. Kalavathi, S. Deoghare, V. B. S. Prasath. Near lossless compression for 3D radiological images using optimal multilinear singular value decomposition (3D-VOI-OMLSVD). Journal of Digital Imaging, 2022. doi:10.1007/s10278-022-00687-8

  8. K. Jin, D. Schnell, G. Li, N. Salomonis, S. Prasath, R. Szczesniak, B. J. Aronow. CellDrift: Inferring perturbation responses in temporally sampled single-cell data. Briefings in Bioinformatics, 23(5), 1-11, September 2022. doi:10.1093/bib/bbac324

  9. A. B. A. Hassanat, A. A. Albustanji, A. S. Tarawneh, M. Alrashidi, H. Alharbi, M. Alanazi, M. Alghamdi, I. S. Alkhazi, V. B. S. Prasath. DeepVeil: Deep learning for identification of face, gender, expression recognition under veiled conditions. International Journal of Biometrics, 14(3/4), 453-480, August 2022. doi:10.1504/IJBM.2022.10048981

  10. S. Bharati, P. Podder, D. N. H. Thanh, V. B. S. Prasath. Dementia classification using MR imaging and voting based machine learning models. Multimedia Tools and Applications, 81(18), 25971-25992, July 2022. doi:10.1007/s11042-022-12754-x

  11. S. Bharati, M. R. H. Mondal, P. Podder, V. B. S. Prasath. Federated learning: Applications, challenges and future directions. International Journal of Hybrid Intelligent Systems, 18(1-2), 19-35, May 2022. doi:10.3233/HIS-220006

  12. S. Bharati, M. R. H. Mondal, P. Podder, V. B. S. Prasath. Deep learning for medical image registration: A comprehensive review. International Journal of Computer Information Systems and Industrial Management Applications, 14, 173-190, April 2022. doi:Weblink

  13. D. Katsuma, H. Kawanaka, V. B. S. Prasath, B. J. Aronow. Data augmentation using generative adversarial networks for multi-class segmentation of lung confocal IF images. Journal of Advanced Computational Intelligence and Intelligent Informatics, 26(2), 138-146, March 2022. doi:10.20965/jaciii.2022.p0138

  14. S. Boopathiraja, V. Punitha, P. Kalavathi, V. B. S. Prasath. Computational 2D and 3D medical image data compression models. Archives of Computational Methods in Engineering, 29(2), 975-1007, March 2022. doi:10.1007/s11831-021-09602-w

  15. D. N. H. Thanh, L. T. Thanh, U. Erkan, A. Khamparia, V. B. S. Prasath. Dermoscopic image segmentation method based on convolutional neural networks. International Journal of Computer Applications in Technology, 66(2), 89-99, December 2021. doi:10.1504/IJCAT.2021.119757

  16. N. Salamat, M. M. S. Missen, V. B. S. Prasath. Recent developments in computational color image denoising with PDEs to deep learning: A review. Artificial Intelligence Review, 54(8), 6245-6276, December 2021. doi:10.1007/s10462-021-09977-z

  17. G. Li, B. Iyer, V. B. S. Prasath, Y. Ni, N. Salomonis. DeepImmuno: Deep learning-empowered prediction and generation of immunogenic peptides for T-cell immunity. Briefings in Bioinformatics, 22(6), 1-16, November 2021. doi:10.1093/bib/bbab160

  18. D. N. H. Thanh, V. B. S. Prasath, T. K. Phung, N. Q. Hung. Impulse denoising based on noise accumulation and harmonic analysis techniques. Optik - International Journal for Light and Electron Optics, 241, Article ID 166163, September 2021. doi:10.1016/j.ijleo.2020.166163

  19. M. Shah, D. Shu, V. B. S. Prasath, Y. Ni, A. Schapiro, K. Dufendach. Machine learning for detection of correct peripherally inserted central catheter tip position from radiology reports in infants. Applied Clinical Informatics, 12(04), 856-863, August 2021. doi:10.1055/s-0041-1735178

  20. S. Boopathiraja, P. Kalavathi, V. B. S. Prasath. On a hybrid lossless compression technique for three-dimensional medical images. Journal of Applied Clinical Medical Physics, 22(8), 191-203, August 2021. doi:10.1002/ACM2.12960

  21. T. Priya, P. Kalavathi, V. B. S. Prasath, R. Sivanesan. Brain tissue volume estimation to detect Alzheimer’s disease in magnetic resonance images. Soft Computing, 25(15), 10007-10017, August 2021. doi:10.1007/s00500-021-05621-8

  22. M. Husnain, M. M. S. Missen, N. Akhtar, M. Coustaty, S. Mumtaz, V. B. S. Prasath. A systematic study on the role of SentiWordNet in opinion mining. Frontiers of Computer Science, 15(5), Article ID 154614, August 2021. doi:10.1007/s11704-019-9094-0

  23. S. Bharati, P. Podder, M. R. H. Mondal, V. B. S. Prasath. Medical imaging with deep learning for COVID-19 diagnosis: A comprehensive review. International Journal of Computer Information Systems and Industrial Management Applications, 13, 91-112, July 2021. doi:Weblink

  24. S. Bharati, P. Podder, M. R. H. Mondal, V. B. S. Prasath. CO-ResNet: Optimized ResNet model for COVID-19 diagnosis from X-ray images. International Journal of Hybrid Intelligent Systems, 17(1-2), 71-85, July 2021. doi:10.3233/HIS-210008

  25. R. Deotale, S. Rawat, V. Vijayarajan, V. B. S. Prasath. POCASUM: Policy categorizer and summarizer based on text mining and machine learning. Soft Computing, 25(14), 9365-9375, July 2021. doi:10.1007/s00500-021-05916-w

  26. V. B. S. Prasath, D. N. H. Thanh, L. M. Hieu, L. T. Thanh. Compression artifacts reduction with multiscale tensor regularization. Multidimensional Systems and Signal Processing, 32(2), 521-531, April 2021. doi:10.1007/s11045-020-00747-8

  27. J. Zhang, Q. Wu, C. B. Johnson, G. Pham, J. M. Kinder, A. Olsson, A. Slaughter, M. May, B. Weinhaus, A. D'Alessandro, J. D. Engel, J. X. Jiang, J. M. Kofron, L. F. Huang, V. B. S. Prasath, S. S. Way, N. Salomonis, H. L. Grimes, D. Lucas. In situ mapping identifies distinct vascular niches for myelopoiesis. Nature, 590, 457-462, February 2021. doi:10.1038/s41586-021-03201-2

  28. M. M. S. Missen, A. Naeem, H. Asmat, N. Salamat, N. Akhtar, M. Coustaty, V. B. S. Prasath. Improving seller-customer communication process using word embeddings. Journal of Ambient Intelligence and Humanized Computing, 12(2), 2257-2272, February 2021. doi:10.1007/s12652-020-02323-1

  29. D. N. H. Thanh, N. H. Hai, L. M. Hieu, P. Tiwari, V. B. S. Prasath. Skin lesion segmentation method for dermoscopic images with convolutional neural networks and semantic segmentation. Computer Optics, 45(1), 122-129, January 2021. doi:10.18287/2412-6179-CO-748

  30. T. Hayakawa, V. B. S. Prasath, H. Kawanaka, B. J. Aronow, S. Tsuruoka. Computational nuclei segmentation methods in digital pathology: A survey. Archives of Computational Methods in Engineering, 28(1), 1-13, January 2021. doi:10.1007/s11831-019-09366-4

  31. D. N. H. Thanh, V. B. S. Prasath, S. Dvoenko, L. M. Hieu. An adaptive image inpainting method based on Euler’s elastica with adaptive parameters estimation and the discrete gradient method. Signal Processing, 178, 107797, January 2021. doi:10.1016/j.sigpro.2020.107797

  32. D. N. H. Thanh, V. B. S. Prasath, L. M. Hieu, S. Dvoenko. An adaptive method for image restoration based on high-order total variation and inverse gradient. Signal, Image and Video Processing, 14(6), 1189-1197, September 2020. doi:10.1007/s11760-020-01657-9

  33. A. Rashid, N. Salamat, V. B. S. Prasath. Dynamic increased capacity approach steganography in spatial domain. Traitement du Signal, 37(4), 671-678, August 2020. doi:10.18280/ts.370417

  34. V. B. S. Prasath, D. N. H. Thanh, N. Q. Hung, L. M. Hieu. Multiscale gradient maps augmented Fisher information-based image edge detection. IEEE Access, 8, 141104-141110, August 2020. doi:10.1109/ACCESS.2020.3013888

  35. D. N. H. Thanh, N. H. Hai, V. B. S. Prasath, L. M. Hieu, J. M. R. S. Tavares. A two-stage filter for high density salt and pepper denoising. Multimedia Tools and Applications, 79(29-30), 21013-21035, August 2020. doi:10.1007/s11042-020-08887-6

  36. V. B. S. Prasath, D. N. H. Thanh, L. T. Thanh, N. Q. San, S. Dvoenko. Human visual system consistent model for wireless capsule endoscopy image enhancement and applications. Pattern Recognition and Image Analysis, 30(3), 280-287, July 2020. doi:10.1134/S1054661820030219

  37. D. N. H. Thanh, V. B. S. Prasath, L. M. Hieu, N. N. Hien. Melanoma skin cancer detection method based on adaptive principal curvature, colour normalisation and feature extraction with the ABCD rule. Journal of Digital Imaging, 33(3), 574-585, June 2020. doi:10.1007/s10278-019-00316-x

  38. E. H. S. Diop, A.-O. Boudraa, V. B. S. Prasath. Optimal nonlinear signal approximations based on piecewise constant functions. Circuits, Systems and Signal Processing, 39(5), 2673-2694, May 2020. doi:10.1007/s00034-019-01285-w

  39. L. M. Hieu, D. N. H. Thanh, V. B. S. Prasath. Second order monotone difference schemes with approximation on non-uniform grids for two-dimensional quasilinear parabolic convection-diffusion equations. Vestnik St. Petersburg University, Mathematics, 53(2), 232-240, April 2020. doi:10.1134/S1063454120020107

  40. D. N. H. Thanh, L. T. Thanh, N. N. Hien, S. Prasath. Adaptive total variation L1 regularization for salt and pepper image denoising. Optik - International Journal for Light and Electron Optics, 208, Article ID 163677, April 2020. doi:10.1016/j.ijleo.2019.163677

  41. M. Singh, U. Bajpai, V. Vijayarajan, V. B. S. Prasath. Generation of fashionable clothes using generative adversarial networks: A preliminary feasibility study. International Journal of Clothing Science and Technology, 32(2), 177-187, April 2020. doi:10.1108/IJCST-12-2018-0148

  42. M. M. S. Missen, S. Qureshi, N. Salamat, N. Akhtar, H. Asmat, M. Coustaty, V. B. S. Prasath. Scientometric analysis of social science and science disciplines in a developing nation. Scientometrics, 123, 113–142, April 2020. doi:10.1007/s11192-020-03379-8

  43. S. Bidani, R. P. Priya, V. Vijayarajan, V. B. S. Prasath. Automatic body mass index detection using correlation of face visual cues. Technology and Health Care, 28(1), 107-112, January 2020. doi:10.3233/THC-191850

  44. A. B. Hassanat, K. Almohammadi, E. Alkafaween, E. Abunawas, A. Hammouri, V. B. S. Prasath. Choosing mutation and crossover ratios for genetic algorithms - A review with a new dynamic approach. Information, 10(12), 390, December 2019. doi:10.3390/info10120390

  45. M. M. S. Missen, A. Javed, H. Asmat, M. Nosheen, M. Coustaty, N. Salamat, V. B. S. Prasath. Systematic review and usability evaluation of writing mobile apps for children. New Review of Hypermedia and Multimedia, 25(3), 137-160, December 2019. Special issue on Advances in Multimedia and Educational Technology. doi:10.1080/13614568.2019.1677787

  46. N. H. Hai, L. M. Hieu, D. N. H. Thanh, N. V. Son, V. B. S. Prasath. An adaptive image inpainting method based on the weighted mean. Informatica, 43(4), 503-513, December 2019. doi:10.31449/inf.v43i4.2461

  47. H. A. A. Alfeilat, A. B. A. Hassanat, O. Lasassmeh, A. S. Tarawneh, M. B. Alhasanat, H. S. E. Salman, V. B. S. Prasath. Effects of distance measure choice on K-nearest neighbor classifier performance: A review. Big Data, 7(4), 221-248, December 2019. doi:10.1089/big.2018.0175

  48. V. B. S. Prasath, R. Pelapur, G. Seetharaman, K. Palaniappan. Multiscale structure tensor for improved feature extraction and image regularization. IEEE Transactions on Image Processing, 28(12), 6198-6210, December 2019. doi:10.1109/TIP.2019.2924799

  49. A. Pranav, R. Rajeshkannan, V. Vijayarajan, V. B. S. Prasath. Break, Make, and Take: An information retrieval approach. Sādhanā, 44, 204, 11pp, September 2019. doi:10.1007/s12046-019-1187-9

  50. S. M. H. Mousavi, V. Lyashenko, V. B. S. Prasath. Analysis of a robust edge detection system in different color spaces using color and depth images. Computer Optics, 43(4), 632-646, July 2019. doi:10.18287/2412-6179-2019-43-4-632-646

  51. D. N. H. Thanh, V. B. S. Prasath, L. M. Hieu. A review on CT and X-ray images denoising methods. Informatica, 43(2), 151-159, June 2019. doi:10.31449/inf.v43i2.2179

  52. V. B. S. Prasath. Video denoising with adaptive temporal averaging. Engineering Reviews, 39(3), 243-247, June 2019. doi:10.30765/er.39.3.05

  53. D. N. H. Thanh, V. B. S. Prasath, N. V. Son, L. M. Hieu. An adaptive image inpainting method based on the modified Mumford-Shah model and multiscale parameter estimation. Computer Optics, 43(2), 251-257, May 2019. doi:10.18287/2412-6179-2019-43-2-251-257

  54. M. Attik, M. M. S. Missen, M. Coustaty, G. S. Choi, F. S. Alotaibi, N. Akhtar, M. Z. Jhandir, V. B. S. Prasath, N. Salamat, M. Husnain. OpinionML - Opinion markup language for sentiment representation. Symmetry, 11(4), 545, April 2019. doi:10.3390/sym11040545

  55. V. B. S. Prasath, D. N. H. Thanh. Structure tensor adaptive total variation for image restoration. Turkish Journal of Electrical Engineering and Computer Sciences, 27(2), 1147-1156, March 2019. doi:10.3906/elk-1802-76

  56. S. P. Gochhayat, P. Kaliyar, M. Conti, P. Tiwari, V. B. S. Prasath, D. Gupta, A. Khanna. LISA: Lightweight context-aware IoT service architecture. Journal of Cleaner Production, 212, 1345-1356, March 2019. doi:10.1016/j.jclepro.2018.12.096

  57. A. B. Hassanat, V. B. S. Prasath, M. Al-kasassbeh, A. S. Tarawneh, A. J. Al-shamailh. Magnetic energy-based feature extraction for low-quality fingerprint images. Signal, Image and Video Processing, 12(8), 1471-1478, November 2018. doi:10.1007/s11760-018-1302-0

  58. A. B. Hassanat, G. Altarawneh, A. S. Tarawneh, H. Faris, M. B. Alhasanat, A. De Voogt, B. Al-Rawashdeh, M. Alshamaileh, V. B. S. Prasath. On computerizing the ancient game of tab. International Journal of Gaming and Computer-Mediated Simulations (IJGCMS), 10(3), Article 2, 21pp, September 2018. doi:10.4018/IJGCMS.2018070102

  59. A. Yonekura, H. Kawanaka, V. B. S. Prasath, B. J. Aronow, H. Takase. Automatic disease stage classification of glioblastoma multiforme histopathological images using deep convolutional neural network. Biomedical Engineering Letters, 8(3), 321-327, August 2018. doi:10.1007/s13534-018-0077-0

  60. A. B. Hassanat, V. B. S. Prasath, M. A. Abbadi, S. A. Abu-Qdari, H. Faris. An improved genetic algorithm with a new initialization mechanism based on regression techniques. Information, 9(7), 167, July 2018. doi:10.3390/info9070167

  61. V. B. S. Prasath. Automatic image and video analysis for capsule endoscopy - An open frontier. International Journal of Robotic Engineering, 3(1), 007, June 2018. Invited paper. doi:10.35840/2631-5106/4107

  62. V. B. S. Prasath, J. C. Moreno. On convergent finite difference schemes for variational - PDE based image processing. Computational and Applied Mathematics, 37(2), 1562-1580, May 2018. doi:10.1007/s40314-016-0414-9

  63. M. M. S. Missen, M. Coustaty, N. Salamat, V. B. S. Prasath. SentiML++: An extension of the SentiML sentiment annotation scheme. New Review of Hypermedia and Multimedia, 24(1), 28-43, March 2018. doi:10.1080/13614568.2018.1448007

  64. V. B. S. Prasath, D. Vorotnikov. On time adaptive critical variable exponent vectorial diffusion flows and their applications in image processing I. Analysis. Nonlinear Analysis, 168, 176-197, March 2018. doi:10.1016/j.na.2017.11.013

  65. A. Rashid, N. Salamat, V. B. S. Prasath. An algorithm for data hiding in radiographic images and ePHI/R application. Technologies, 6(1), 7, March 2018. Special issue on Medical Imaging & Image Processing II. doi:10.3390/technologies6010007

  66. V. B. S. Prasath. Deep learning based computer-aided diagnosis for neuroimaging data: Focused review and future potential. Neuroimmunology and Neuroinflammation, 5(1), 3pp, January 2018. Invited paper. doi:10.20517/2347-8659.2017.68

  67. D. Sharma, V. B. S. Prasath, V. Vijayarajan, M. Kubendiran, R. Padmapriya. Enhanced multi-view point non-negative matrix factorization clustering for clinical documents analysis. Biomedical and Pharmacology Journal, 10(4), 2135-2143, December 2017. doi:10.13005/bpj/1338

  68. L. Chen, V. B. S. Prasath. Measuring bone density connectivity using dual energy X-ray absorptiometry images. International Journal of Fuzzy Logic and Intelligent Systems, 17(4), 235-244, December 2017. doi:10.5391/IJFIS.2017.17.4.235

  69. V. B. S. Prasath. Image denoising by anisotropic diffusion with inter-scale information fusion. Pattern Recognition and Image Analysis, 27(4), 748-753, September 2017. doi:10.1134/S1054661817040174

  70. A. B. Hassanat, V. B. S. Prasath, B. M. Al-Mahadeen, S. M. M. Alhasanat. Classification and gender recognition from veiled-faces. International Journal of Biometrics, 9(4), 347-364, September 2017. doi:10.1504/IJBM.2017.10009351

  71. V. B. S. Prasath. Quantum noise removal in X-ray images with adaptive total variation regularization. Informatica, 28(3), 505-515, September 2017. doi:10.15388/Informatica.2017.141

  72. P. Kalavathi, M. Senthamilselvi, V. B. S. Prasath. Review of computational methods on brain symmetric and asymmetric analysis from neuroimaging techniques. Technologies, 5(2), 16, June 2017. Special issue on Medical Imaging & Image Processing II. doi:10.3390/technologies5020016

  73. H. Aliakbarpour, J. F. Ferreira, V. B. S. Prasath, K. Palaniappan, G. Seetharaman, J. Dias. A probabilistic framework for 3D reconstruction using heterogeneous sensors. IEEE Sensors Journal, 17(9), 2640-2641, May 2017. doi:10.1109/JSEN.2017.2679187

  74. V. B. S. Prasath. Tensor sketch - Scene sketch generation using structure tensor. Asian Journal of Physics, 26(3-4), 213-218, April 2017. Special issue on Trends in Image Processing and Machine Learning. Invited paper.

  75. V. B. S. Prasath. Vascularization from Flexible Imaging Color Enhancement (FICE) for polyp localization. Journal of Medicine and Life, 10(2), 147-149, April 2017. doi:Weblink

  76. V. B. S. Prasath. App review series: Radiology Pocket Game. Journal of Digital Imaging, 30(2), 127-129, April 2017. doi:10.1007/s10278-016-9924-7

  77. A. B. Hassanat, V. B. S. Prasath, K. I. Mseidein, M. Al-awadi, A. M. Hammouri. A hybrid wavelet-shearlet approach to robust digital image watermarking. Informatica, 41(1), 3-24, March 2017. Special issue on End-user Privacy, Security, and Copyright issues. doi:Weblink

  78. V. B. S. Prasath. Polyp detection and segmentation from video capsule endoscopy: A review. Journal of Imaging, 3(1), 15pp, March 2017. Special issue on Image and Video Processing in Medicine. doi:10.3390/jimaging3010001

  79. H. Aliakbarpour, V. B. S. Prasath, K. Palaniappan, G. Seetharaman, J. Dias. Heterogeneous multi-view information fusion: Review of 3-D reconstruction methods and a new registration with uncertainty modeling. IEEE Access, 4(1), 8264-8285, December 2016. doi:10.1109/ACCESS.2016.2629987

  80. C. I. Sarmiento, D. San-Juan, V. B. S. Prasath. Brief history of transcranial direct current stimulation (tDCS): From electrical fishes to microcontrollers. Psychological Medicine, 46(15), 3259-3261, November 2016. doi:10.1017/S0033291716001926

  81. V. B. S. Prasath. Adaptive coherence-enhancing diffusion flow for color images. Informatica, 40(3), 337-342, September 2016. doi:Weblink

  82. P. Kalavathi, V. B. S. Prasath. Methods on skull stripping of MRI head scan images - A review. Journal of Digital Imaging, 29(3), 365-397, June 2016. doi:10.1007/s10278-015-9847-8

  83. J. C. Moreno, V. B. S. Prasath, J. C. Neves. Color image processing by vectorial total variation with gradient channels coupling. Inverse Problems and Imaging, 10(2), 461-497, May 2016. doi:10.3934/ipi.2016008

  84. P. Kalavathi, V. B. S. Prasath. Automatic segmentation of cerebral hemispheres in MR human head scans. International Journal of Imaging Systems and Technology - Neuroimaging and Brain Mapping, 26(1), 15-23, April 2016. doi:10.1002/ima.22152

  85. J. C. Moreno, V. B. S. Prasath, G. Santos, H. Proenca. Robust periocular recognition by fusing sparse representations of color and geometry information. Journal of Signal Processing Systems, 82(3), 403-417, March 2016. doi:10.1007/s11265-015-1023-3

  86. V. B. S. Prasath, D. Vorotnikov, R. Pelapur, S. Jose, G. Seetharaman, K. Palaniappan. Multiscale Tikhonov-total variation image restoration using spatially varying edge coherence exponent. IEEE Transactions on Image Processing, 24(12), 5220-5235, December 2015. doi:10.1109/TIP.2015.2479471

  87. H. Aliakbarpour, V. B. S. Prasath, J. Dias. On optimal multi-sensor network configuration for 3D registration. Journal of Sensor and Actuator Networks, 4(4), 293-314, November 2015. Special issue on 3D Wireless Sensor Network. doi:10.3390/jsan4040293

  88. V. B. S. Prasath, J. M. Urbano, D. Vorotnikov. Analysis of adaptive forward-backward diffusion flows with applications in image processing. Inverse Problems, 31, 105008 (30pp), October 2015. doi:10.1088/0266-5611/31/10/105008

  89. J. C. Moreno, V. B. S. Prasath, H. Proenca, K. Palaniappan. Fast and globally convex multiphase active contours for brain MRI segmentation. Computer Vision and Image Understanding, 125, 237-250, August 2014. doi:10.1016/j.cviu.2014.04.010

  90. V. B. S. Prasath, D. Vorotnikov. Weighted and well-balanced anisotropic diffusion scheme for image denoising and restoration. Nonlinear Analysis: Real World Applications, 17, 33-46, June 2014. doi:10.1016/j.nonrwa.2013.10.004

  91. V. B. S. Prasath, O. Haddad. Radar shadow detection in synthetic aperture radar images using digital elevation model and projections. Journal of Applied Remote Sensing, 8(1), 083628, May 2014. doi:10.1117/1.JRS.8.083628

  92. V. B. S. Prasath, D. Vorotnikov. On a system of adaptive coupled PDEs for image restoration. Journal of Mathematical Imaging and Vision, 48(1), 35-52, January 2014. doi:10.1007/s10851-012-0386-3

  93. V. B. S. Prasath, A. Singh. An adaptive anisotropic diffusion scheme for image restoration and selective smoothing. International Journal of Image and Graphics, 12(1), Article ID 1250003, 18 pages, January 2012. doi:10.1142/S0219467812500039

  94. V. B. S. Prasath. A well-posed multiscale regularization scheme for digital image denoising. International Journal of Applied Mathematics and Computer Science, 21(4), 769-777, December 2011. doi:10.2478/v10006-011-0061-7

  95. P. N. Figueiredo, I. N. Figueiredo, S. Prasath, R. Tsai. Automatic polyp detection in Pillcam Colon 2 Capsule images and videos: Preliminary feasibility report. Diagnostic and Therapeutic Endoscopy, Vol. 2011, Article ID 182435, 7 pages, March 2011. doi:10.1155/2011/182435

  96. V. B. S. Prasath, A. Singh. Multichannel image restoration using combined channel information and robust M-estimator approach. International Journal of Tomography and Statistics, 15(10), 9-22, 2010. doi:Weblink

  97. V. B. S. Prasath, A. Singh. Well-posed inhomogeneous nonlinear diffusion scheme for digital image denoising. Journal of Applied Mathematics, Vol. 2010, Article ID 763847, 14 pages, April 2010. doi:10.1155/2010/763847

  98. V. B. S. Prasath, A. Singh. Multispectral image denoising by well-posed anisotropic diffusion scheme with channel coupling. International Journal of Remote Sensing, 31(8), 2091-2099, March 2010. doi:10.1080/01431160903260965

  99. V. B. S. Prasath, A. Singh. A hybrid convex variational model for image restoration. Applied Mathematics and Computation, 215(10), 3655-3664, January 2010. doi:10.1016/j.amc.2009.11.003

Conference Publications:


  1. A. Shukla, N. Lodha, V. Vijayarajan, S. Prasath. Building novel approach for context-based image retrieval in the area of healthcare. First International Conference on Applied Data Science and Smart Systems (ADSSS), India, November 2022. AIP Proceedings. (Best Paper Award)

  2. A. Shukla, N. Lodha, V. Vijayarajan, S. Prasath. Simulation of content based on image retrieval for financial institutions. First International Conference on Applied Data Science and Smart Systems (ADSSS), India, November 2022. AIP Proceedings.

  3. S. Bharati, P. Podder, M. R. H. Mondal, V. B. S. Prasath, N. Gandhi. Ensemble learning for data-driven diagnosis of polycystic ovary syndrome. 21st International Conference on Intelligent Systems Design and Applications (ISDA), Seattle, WA USA, December 2021. Proc. Springer LNNS 418, (Eds.: A. Abraham et al.), pp. 1250-1259, March 2022. doi:10.1007/978-3-030-96308-8_116

  4. V. B. S. Prasath, N. N. Hien, D. N. H. Thanh, S. Dvoenko. SIMRES-TV: Noise and residual similarity for parameter estimation in total variation. 4th International Workshop on Photogrammetric and Computer Vision Techniques for Video surveillance, Biometrics and Biomedicine (PSBB), Moscow, Russia, April 2021. Proc. ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIV-2/W1, 171-176, April 2021. doi:10.5194/isprs-archives-XLIV-2-W1-2021-171-2021

  5. V. B. S. Prasath, D. N. H. Thanh, N. H. Hai, S. Dvoenko. Multiregion multiscale image segmentation with anisotropic diffusion. 7th Workshop Image Mining. Theory and Applications (IMTA VII), January 2021. Proc. Springer LNCS 12665, 129-140, February 2021. doi:10.1007/978-3-030-68821-9_13

  6. L. T. Thanh, D. N. H. Thanh, N. N. Hien, U. Erkan, V. B. S. Prasath. Single image dehazing with optimal color channels and nonlinear transformation. International Conference on Communications and Electronics (ICCE), Phu Quoc, Vietnam. Proc. IEEE, 421-426, January 2021. doi:10.1109/ICCE48956.2021.9352087

  7. L. T. Thanh, D. N. H. Thanh, N. M. Hue, H. N. T. Linh, V. B. S. Prasath. On numerical implementation of the Laplace equation-based image inpainting. 1st International Conference on Computational Research and Data Analytics (ICCRDA), October 2020. IOP Conference Series: Material Science and Engineering, 1022, 012034, January 2021. doi:10.1088/1757-899X/1022/1/012034

  8. D. N. H. Thanh, L. T. Thanh, P. Kalavathi, V. B. S. Prasath. Chest X-ray image denoising using Nesterov optimization method with total variation regularization. 3rd International Conference on Computing and Network Communications (CoCoNet), Trivandrum, India, December 2019. Proc. Elsevier Procedia Computer Science, vol. 171, 1961-1968, May 2020. doi:10.1016/j.procs.2020.04.210

  9. D. N. H. Thanh, N. N. Hien, P. Kalavathi, V. B. S. Prasath. Adaptive switching weight mean filter for salt and pepper image denoising. 3rd International Conference on Computing and Network Communications (CoCoNet), Trivandrum, India, December 2019. Proc. Elsevier Procedia Computer Science, vol. 171, 292-301, May 2020. doi:10.1016/j.procs.2020.04.031

  10. N. M. Hue, D. N. H. Thanh, L. T. Thanh, N. N. Hien, V. B. S. Prasath. Image denoising with overlapping group sparsity and second order total variation regularization. 6th NAFOSTED Conference on Information and Computer Science (NICS), Hanoi, Vietnam. Proc. IEEE. 370-374, December 2019. doi:10.1109/NICS48868.2019.9023801

  11. N. V. Son, D. N. H. Thanh, U. Erkan, V. B. S. Prasath. An image inpainting method based on adaptive fuzzy switching median. 6th NAFOSTED Conference on Information and Computer Science (NICS), Hanoi, Vietnam. Proc. IEEE, 357-362, December 2019. doi:10.1109/NICS48868.2019.9023869

  12. S. Isaka, H. Kawanaka, B. Aronow, V. B. S. Prasath. Multi-class segmentation of lung immunofluorescence confocal images using deep learning. IEEE International Conference on Bioinformatics and Biomedicine (BIBM), International Workshop on Deep Learning in Bioinformatics, Biomedicine, and Healthcare Informatics (DLB2H), San Diego, CA, USA. Proc. IEEE, 2362-2368, November 2019. doi:10.1109/BIBM47256.2019.8983146

  13. L. T. Thanh, D. N. H. Thanh, V. B. S. Prasath. Adaptive texts deconvolution method for real natural images. 25th Asia-Pacific Conference on Communications (APCC), Ho Chi Minh City, Vietnam. Proc. IEEE, 110-115, November 2019. doi:10.1109/APCC47188.2019.9026515

  14. L. T. Thanh, D. N. H. Thanh, N. M. Hue, V. B. S. Prasath. Single image dehazing based on adaptive histogram equalization and linearization of Gamma correction. 25th Asia-Pacific Conference on Communications (APCC), Ho Chi Minh City, Vietnam. Proc. IEEE, 36-40, November 2019. doi:10.1109/APCC47188.2019.9026457

  15. N. H. Hai, D. N. H. Thanh, N. N. Hien, C. Premachandra, V. B. S. Prasath. A fast denoising algorithm for X-ray images with variance stabilizing transform. 11th International conference on Knowledge and Systems Engineering (KSE), Da Nang, Vitenam. Proc. IEEE, October 2019. doi:10.1109/KSE.2019.8919364

  16. S. M. H. Mousavi, V. B. S. Prasath, S. M. H. Mousavi. Persian classical music instrument recognition (PCMIR) using a novel Persian music database. 9th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran. Proc. IEEE, 122-130, October 2019. doi:10.1109/ICCKE48569.2019.8965166. Download dataset at Kaggle: PCMIR-Database

  17. D. N. H. Thanh, N. N. Hien, V. B. S. Prasath, U. Erkan, A. Khamparia. Adaptive thresholding skin lesion segmentation with Gabor filters and principal component analysis. 4th International Conference on Research in Intelligent and Computing in Engineering (RICE), Hanoi, Vietnam. Proc. Springer AISC, vol. 1125, 811-820, August 2019. doi:10.1007/978-981-15-2780-7_87

  18. A. Al-Btoush, M. A. Abbadi, A. B. Hassanat, A. S. Tarawneh, A. Hasanat, V. B. S. Prasath. New features for eye-tracking systems: Preliminary results. 10th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan. Proc. IEEE, pp. 179-184, June 2019. doi:10.1109/IACS.2019.8809129

  19. D. N. H. Thanh, V. B. S. Prasath, L. M. Hieu, H. Kawanaka. Image inpainting method based on mixed median. Joint 2019 8th International Conference on Informatics, Electronics & Vision (ICIEV) & 3rd International Conference on Imaging, Vision & Pattern Recognition (IVPR), Spokane, WA, USA. Proc. IEEE, pp. 24-29, May 2019. doi:10.1109/ICIEV.2019.8858556

  20. D. N. H. Thanh, S. Dvoenko, V. B. S. Prasath, N. H. Hai. Blood vessels segmentation method for retinal fundus images based on adaptive principal curvature and image derivative operators. 3rd International Workshop on Photogrammetric and Computer Vision Techniques for Video surveillance, Biometrics and Biomedicine (PSBB), Moscow, Russia, May 2019. Proc. ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W12, 211-218, May 2019. doi:10.5194/isprs-archives-XLII-2-W12-211-2019

  21. D. N. H. Thanh, U. Erkan, V. B. S. Prasath, V. Kumar, N. N. Hien. A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. 6th International Conference on Electrical and Electronics Engineering (ICEEE), Istanbul, Turkey. Proc. IEEE, pp. 116-120, April 2019. doi:10.1109/ICEEE2019.2019.00030

  22. D. N. H. Thanh, Nguyen Van Son, V. B. S. Prasath. Distorted image reconstruction method with trimmed median. 3rd International Conference on Recent Advances in Signal Processing, Telecommunications and Computing (SigTelCom), HaNoi, Vietnam. Proc. IEEE, pp. 58-62, Mar 2019. doi:10.1109/SIGTELCOM.2019.8696138

  23. D. N. H. Thanh, L. T. Thanh, V. B. S. Prasath, U. Erkan. An improved BPDF filter for high density salt and pepper denoising. IEEE-RIVF International Conference on Computing and Communication Technologies (RIVF), Danang, Vietnam. Proc. IEEE, Mar 2019. doi:10.1109/RIVF.2019.8713669

  24. D. N. H. Thanh, N. N. Hien, V. B. S. Prasath, L. T. Thanh, N. H. Hai. Automatic initial boundary generation methods based on edge detectors for the level set function of the Chan-Vese segmentation model and applications in biomedical image processing. 7th International Conference on Frontiers of Intelligent Computing: Theory and Application (FICTA), Duy Tan University, Da Nang, Vietnam. Proc. Springer AISC 1014 (Eds.: S. C. Satapathy et al.), pp. 171-181, November 2018. doi:10.1007/978-981-13-9920-6_18

  25. D. N. H. Thanh, V. B. S. Prasath, L. T. Thanh. Total variation L1 fidelity salt-and-pepper denoising with adaptive regularization parameter. 5th NAFOSTED Conference on Information and Computer Science (NICS), Ho Chi Minh City, Vietnam. Proc. IEEE, pp. 400-405, November 2018. doi:10.1109/NICS.2018.8606870

  26. V. B. S. Prasath, D. N. H. Thanh, N. H. Hai. Regularization parameter selection in image restoration with inverse gradient: Single scale or multiscale?. 7th International Conference on Communications and Electronics (ICCE), Hue, Vietnam. Proc. IEEE, pp. 278-282, July 2018. doi:10.1109/CCE.2018.8465720

  27. V. B. S. Prasath, D. N. H. Thanh, N. H. Hai. On selecting the appropriate scale in image selective smoothing by nonlinear diffusion. 7th International Conference on Communications and Electronics (ICCE), Hue, Vietnam. Proc. IEEE, pp. 267-272, July 2018. doi:10.1109/CCE.2018.8465764

  28. A. Yonekura, H. Kawanaka, V. B. S. Prasath, B. J. Arronow, S. Tsuruoka. Glioma subtypes clustering method using histopathological image analysis. 7th International Conference on Informatics, Electronics and Vision (ICIEV), and 2nd International Conference on Imaging, Vision and Pattern Recognition (icIVPR), Fukuoka, Japan. Proc. IEEE, pp. 442-446, June 2018. doi:10.1109/ICIEV.2018.8641031

  29. S. Isaka, H. Kawanaka, V. B. S. Prasath, B. J. Aronow, S. Tsuruoka. Development of a web based image annotation tool for lung immunofluorescent confocal images. 4th International Symposium on Affective Science and Engineering, and the 29th Modern Artificial Intelligence and Cognitive Science Conference (ISASE-MAICS), Spokane, WA, USA, June 2018. doi:10.5057/isase.2018-C000036

  30. V. B. S. Prasath, D. N. H. Thanh, N. H. Hai, N. X. Cuong. Image restoration with total variation and iterative regularization parameter estimation. International Symposium on Information and Communication Technology (SoICT), Nha Trang, Vietnam. Proc. ACM, pp. 378-384, December 2017. doi:10.1145/3155133.3155191

  31. V. B. S. Prasath, H. Kawanaka. Near-light perspective shape from shading for 3D visualizations in endoscopy systems. IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Kansas, MO, USA. Proc. IEEE, pp. 2293-2295, November 2017. doi:10.1109/BIBM.2017.8218031. Available at figshare: doi:10.6084/m9.figshare.5526907

  32. A. Yonekura, H. Kawanaka, V. B. S. Prasath, B. J. Aronow, H. Takase. Improving the generalization of disease stage classification with deep CNN for glioma histopathological images. IEEE International Conference on Bioinformatics and Biomedicine (BIBM), International Workshop on Deep Learning in Bioinformatics, Biomedicine, and Healthcare Informatics (DLB2H), Kansas, MO, USA. Proc. IEEE, pp. 1222-1226, November 2017. doi:10.1109/BIBM.2017.8217831

  33. R. Pelapur, V. B. S. Prasath, J. C. Moreno, M. Heck. 3D Workflow for segmentation and interactive visualization in brain MR images using multiphase active contours. IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Kansas, MO, USA. Proc. IEEE, pp. 921-926, November 2017. doi:10.1109/BIBM.2017.8217780

  34. Y. M. Kassim, V. B. S. Prasath, O. V. Glinskii, V. V. Glinsky, V. H. Huxley, K. Palaniappan. Microvasculature segmentation of arterioles using deep CNN. IEEE International Conference on Image Processing (ICIP), Beijing, China. Proc. IEEE, pp. 580-584, September 2017. doi:10.1109/ICIP.2017.8296347. Slides available at Sigport.

  35. A. Yonekura, H. Kawanaka, V. B. S. Prasath, B. J. Aronow, H. Takase. Glioblastoma Multiforme tissue histopathology images based disease stage classification with deep CNN. 6th International Conference on Informatics, Electronics & Vision (ICIEV), Himeji, Hyogo, Japan. Proc. IEEE, September 2017. doi:10.1109/ICIEV.2017.8338558 (Best Paper Award Finalist)

  36. A. Hassanat, E. Btoush, M. Ali Abbadi, B. M. Al-Mahadeen, M. Al-Awadi, K. I. A. Mseidein, A. M. Almseden, A. S. Tarawneh, M. B. Alhasanat, V. B. S. Prasath, F. A. Al-Alem. Victory sign biometric for terrorists identification: Preliminary results. International Conference on Information and Communication Systems (ICICS), Irbid, Jordan. Proc. IEEE, pp. 182-187, April 2017. doi:10.1109/IACS.2017.7921968 (MIT Technology Review)

  37. V. B. S. Prasath, Y. M. Kassim, Z. A. Oraibi, J.-B. Guiriec, A. Hafiane, K. Palaniappan. HEp-2 cell classification and segmentation using motif texture patterns and spatial features with random forests. 23rd International Conference on Pattern Recognition, International Contest on Pattern Recognition Techniques for Indirect Immunofluorescence Images Analysis, Cancun, Mexico. Proc. IEEE, pp. 90-95, December 2016. doi:10.1109/ICPR.2016.7899614

  38. R. Aktar, V. B. S. Prasath, H. Aliakbarpour, U. Sampathkumar, G. Seetharaman, K. Palaniappan. Video haze removal and Poisson blending based mini-mosaics for wide area motion imagery. IEEE Applied Imagery Pattern Recognition (AIPR), Washington DC, October 2016. Proc. IEEE. doi:10.1109/AIPR.2016.8010552. Available at figshare: doi:10.6084/m9.figshare.4028409.v1

  39. U. Sampathkumar, V. B. S. Prasath, S. Meena, K. Palaniappan. Assisted ground truth generation using interactive segmentation on a visualization and annotation tool. IEEE Applied Imagery Pattern Recognition (AIPR), Washington DC, October 2016. Proc. IEEE. doi:10.1109/AIPR.2016.8010603. Available at figshare: doi:10.6084/m9.figshare.4036245

  40. V. B. S. Prasath, S. Surineni, K. Gao, G. Seetharaman, K. Palaniappan. CSANG: Continuous scale anisotropic Gaussians for robust linear structure extraction. IEEE Applied Imagery Pattern Recognition (AIPR), Washington DC, October 2016. Proc. IEEE. doi:10.1109/AIPR.2016.8010551. Available at figshare: doi:10.6084/m9.figshare.3175450

  41. Y. M. Kassim, V. B. S. Prasath, O. Glinskii, V. Glinsky, V. Huxley, K. Palaniappan. Confocal vessel structure segmentation with optimized feature bank and random forests. IEEE Applied Imagery Pattern Recognition (AIPR), Washington DC, October 2016. Proc. IEEE. doi:10.1109/AIPR.2016.8010580

  42. K. Fukuma, V. B. S. Prasath, H. Kawanaka, B. J. Aronow, H. Takase. A study on nuclei segmentation, feature extraction and disease stage classification for human brain histopathological images. 20th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES), York, UK. Procedia Computer Science, 96, pp. 1202-1020, September 2016. doi:10.1016/j.procs.2016.08.164

  43. S. Meena, V. B. S. Prasath, Y. M. Kassim, R. J. Maude, O. V. Glinskii, V. V. Glinsky, V. Huxley, K. Palaniappan. Multiquadric spline-based interactive segmentation of vascular networks. 38th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE EMBC), Orlando, FL, USA. Proc. IEEE, pp. 5913-5916, August 2016. doi:10.1109/EMBC.2016.7592074

  44. Y. M. Kassim, V. B. S. Prasath, R. Pelapur, O. Glinskii, R. J. Maude, V. Glinsky, V. Huxley, K. Palaniappan. Random forests for dura mater microvasculature segmentation using epifluorescence images. 38th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE EMBC), Orlando, FL, USA. (EMBS Student Paper Competition Finalist) Proc. IEEE, pp. 2901-2904, August 2016. doi:10.1109/EMBC.2016.7591336

  45. K. Fukuma, V. B. S. Prasath, H. Kawanaka, B. J. Aronow, H. Takase. A study on feature extraction and disease stage classification for glioma pathology images. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Vancouver, Canada. Proc. IEEE, pp. 2150-2156, July 2016. doi:10.1109/FUZZ-IEEE.2016.7737958

  46. V. B. S. Prasath, P. Kalavathi. Mixed noise removal using hybrid fourth order mean curvature motion. 2nd International Symposium on Signal Processing and Intelligent Recognition Systems (SIRS), Trivandrum, India. Proc. Springer Advances in Intelligent Systems and Computing 425 (Eds.: S. M. Thampi, S. Bandyopadhyay, S. Krishnan, K.-C. Li, S. Mosin and M. Ma), pp. 625-632, December 2015. doi:10.1007/978-3-319-28658-7_53

  47. V. B. S. Prasath, P. Kalavathi. Adaptive nonlocal filtering for brain MRI restoration. 2nd International Symposium on Signal Processing and Intelligent Recognition Systems (SIRS), Trivandrum, India. Proc. Springer Advances in Intelligent Systems and Computing 425 (Eds.: S. M. Thampi, S. Bandyopadhyay, S. Krishnan, K.-C. Li, S. Mosin and M. Ma), pp. 571-580, December 2015. doi:10.1007/978-3-319-28658-7_48

  48. V. B. S. Prasath, R. Delhibabu. Automatic mucosa detection in video capsule endoscopy with adaptive thresholding. International Conference on Computational Intelligence in Data Mining (ICCIDM), Odisha, India. Proc. Springer SIST 410 (Eds.: H. S. Behera, D. P. Mohapatra), pp. 95-102, December 2015. doi:10.1007/978-81-322-2734-2_10

  49. V. B. S. Prasath, H. Kawanaka. Vascularization features for polyp localization in capsule endoscopy. IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Washington, DC, USA. Proc. IEEE, pp. 1740-1742, November 2015. doi:10.1109/BIBM.2015.7359946. Available at figshare: doi:10.6084/m9.figshare.1585847

  50. V. B. S. Prasath, K. Fukuma, B. J. Aronow, H. Kawanaka. Cell nuclei segmentation in glioma histopathology images with color decomposition based active contours. IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Washington, DC, USA. Proc. IEEE, pp. 1734-1736, November 2015. doi:10.1109/BIBM.2015.7359944. Available at figshare: doi:10.6084/m9.figshare.1588805

  51. K. Fukuma, H. Kawanaka, S. Prasath, B. J. Aronow, H. Takase. Feature extraction and disease stage classification for glioma histopathology images. IEEE 17th International Conference on E-Health Networking, Applications & Services (Healthcom), Boston, USA. Proc. IEEE, pp. 598-599, October 2015. doi:10.1109/HealthCom.2015.7454574

  52. V. B. S. Prasath. On fuzzification of color Spaces for medical decision support in wireless capsule endoscopy. Modern Artificial Intelligence and Cognitive Science Conference (MAICS), Greensboro, NC, USA. Proc. IEUR (Eds. M. Glass J. H. Kim), pp. 147-151, April 2015. http://ceur-ws.org/Vol-1353/paper_20.pdf

  53. V. B. S. Prasath, R. Pelapur, O. Glinskii, V. Glinsky, V. Huxley, K. Palaniappan. Multiscale tensor anisotropic filtering of fluorescence microscopy for denoising microvasculature. IEEE International Symposium on Biomedical Imaging (ISBI), New York, USA. Proc. IEEE, pp. 540-543, April 2015. doi:10.1109/ISBI.2015.7163930 Available at figshare: doi:10.6084/m9.figshare.1309773

  54. V. B. S. Prasath, R. Delhibabu. Color image restoration with fuzzy Gaussian mixture model driven nonlocal filter. 4th Analysis of Images, Social Networks, and Texts (AIST), Yekaterinburg, Russia. Proc. in Springer CCIS 542 (Eds.: M. Khachay, N. Konstantinova, A. Panchenko, D. I. Ignatov, G. V. Labunets), pp. 131-139, April 2015. doi:10.1007/978-3-319-26123-2_13

  55. V. B. S. Prasath, R. Delhibabu. Automatic image segmentation for video capsule endoscopy. International Conference on Computational Intelligence: Health and Disease (CIHD), Visakhapatnam, India, Dec 2014. Computational Intelligence in Medical Informatics. Springer Briefs in Forensic and Medical Bioinformatics (Eds. N. B. Muppalaneni, V. K. Gunjan), pp. 73-80, 2015. doi:10.1007/978-981-287-260-9_7

  56. V. B. S. Prasath, R. Delhibabu. Automatic contrast enhancement for wireless capsule endoscopy videos with spectral optimal contrast-tone mapping. International Conference on Computational Intelligence in Data Mining (ICCIDM), Odisha, India, December 2014. Proc. Springer SIST (Eds.: L. Jain, H. S. Behera, J. K. Mandal, D. P. Mohapatra), pp. 243-250, 2015. doi:10.1007/978-81-322-2205-7_23

  57. V. B. S. Prasath, R. Delhibabu. Image inpainting with modified F-transform. 5th Joint International Conference on Swarm, Evolutionary and Memetic Computing (SEMCCO) & Fuzzy and Neural Computing (FANCCO), Odisha, India, December 2014. Proc. Springer LNCS 8947, pp. 856-867. (Eds.: B. K. Panigrahi, P. N. Suganthan, S. Das), August 2015. doi:10.1007/978-3-319-20294-5_73

  58. V. B. S. Prasath, R. Delhibabu. Image restoration with fuzzy coefficient driven anisotropic diffusion. 5th Joint International Conference on Swarm, Evolutionary and Memetic Computing (SEMCCO) & Fuzzy and Neural Computing (FANCCO), Odisha, India, December 2014. Proc. in Springer LNCS 8947, pp. 145-155. (Eds.: B. K. Panigrahi, P. N. Suganthan, S. Das), August 2015. doi:10.1007/978-3-319-20294-5_13

  59. S. Meena, V. B. S. Prasath, K. Palaniappan, G. Seetharaman. Elastic body spline based image segmentation. IEEE International Conference on Image Processing (ICIP), Paris, France, October 2014. Proc. IEEE, pp. 4378-4382. doi:10.1109/ICIP.2014.7025888. Available at figshare: doi:10.6084/m9.figshare.1203638

  60. R. Pelapur, V. B. S. Prasath, F. Bunyak, O. Glinskii, V. Glinsky, V. Huxley, K. Palaniappan. Multi-focus image fusion using epifluorescence microscopy for robust vascular segmentation. 36th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE EMBC), Chicago, IL, USA. Proc. IEEE, pp. 4735-4738, August 2014. doi:10.1109/EMBC.2014.6944682 Available at figshare: doi:10.6084/m9.figshare.1147490

  61. V. B. S. Prasath, S. Pelapur, K. Palaniappan, G. Seetharaman. Feature fusion and label propagation for textured object video segmentation. Geospatial Info-Fusion and Video Analytics IV, SPIE Defense+Security (DSS), Baltimore Convention Center, Baltimore, Maryland, USA, May 2014. Proc. SPIE. Vol. 9089. doi:10.1117/12.2052983

  62. V. B. S. Prasath, R. Delhibabu. Automatic contrast parameter estimation in anisotropic diffusion for image restoration. Analysis of Images, Social Networks, and Texts (AIST), Yekaterinburg, Russia. Proc. in Springer Communications in Computer and Information Science 436 (Eds.: D. I. Ignatov, M. Khachay, A. Panchenko, N. Konstantinova, R. Yavorsky), pp. 198-206, April 2014. doi:10.1007/978-3-319-12580-0_20 (Best Paper Award)

  63. V. B. S. Prasath, J. C. Moreno. Feature preserving anisotropic diffusion for image restoration. 4th National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG), IIT Jodhpur, India. Proc. IEEE, pp. 1-4, December 2013. doi:10.1109/NCVPRIPG.2013.6776250

  64. J. C. Moreno, V. B. S. Prasath, H. Proenca. Robust periocular recognition by fusing local to holistic sparse representations. 6th International Conference on Security of Information and Networks (SIN), Aksaray, Turkey. Proc. ACM Digital Library. pp. 160-164, November, 2013. doi:10.1145/2523514.2523540

  65. V. B. S. Prasath, O. Haddad, F. Bunyak, O. Glinskii, V. Glinsky, V. Huxley, K. Palaniappan. Robust filtering based segmentation of Dura Mater Laminae using fluorescence microscopy. 35th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE EMBC), Osaka, Japan. Proc. IEEE, pp. 6055-6058, July 2013. doi:10.1109/EMBC.2013.6610933

  66. V. B. S. Prasath, K. Palaniappan, G. Seetharaman. Multichannel texture image segmentation using local feature fitting based variational active contours. 8thIndian Conference on Vision, Graphics and Image Processing (ICVGIP), IIT Bombay, Mumbai, India, December, 2012. Proc. ACM Digital Library. doi:10.1145/2425333.2425411

  67. V. B. S. Prasath, F. Bunyak, P. Dale, S. R. Frazier, K. Palaniappan. Segmentation of breast cancer tissue microarrays for computer-aided diagnosis in pathology. First IEEE Healthcare Technology Conference: Translational Engineering in Health & Medicine, Houston, TX, USA. Proc. in IEEE, pp. 40-43, November, 2012. doi:Weblink

  68. I. N. Figueiredo, J. C. Moreno, V. B. S. Prasath. Texture image segmentation with smooth gradients and local information. Computational Modeling of Objects Presented in Images: Fundamentals, Methods and Applications (CompIMAGE), Rome, Italy. Proc. CRC Press (Eds.: P. D. Giamberardino, D. Iacoviello, J. M. R. S. Tavares, R. M. N. Jorge), pp. 115-119, September, 2012. doi:10.1201/b12753-28

  69. V. B. S. Prasath, I. N. Figueiredo, P. N. Figueiredo, K. Palaniappan. Mucosal region detection and 3D reconstruction in wireless capsule endoscopy videos using active contours. 34th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE EMBC), San Diego, USA. Proc. IEEE, pp. 4014-4017, August 2012. doi:10.1109/EMBC.2012.6346847

  70. I. N. Figueiredo, J. C. Moreno, V. B. S. Prasath, P. N. Figueiredo. A segmentation model and application to endoscopic images. International Conference on Image Analysis and Recognition (ICIAR), Aveiro, Portugal. Proc. in Springer LNCS 7325 (Eds.: A. Campilho and M. Kamel), Part II, pp. 164-171, June 2012. doi:10.1007/978-3-642-31298-4_20

  71. V. B. S. Prasath. Weighted Laplacian differences based multispectral anisotropic diffusion. IEEE Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada. Proc. in IEEE, pp. 4042-4045, July 2011. doi:10.1109/IGARSS.2011.6050119

  72. V. B. S. Prasath. Color image segmentation based on vectorial multiscale diffusion with inter-scale linking. 3rd International Conference on Pattern Recognition and Machine Intelligence (PReMI), Delhi, India. Proc. in Springer LNCS 5909. (Eds.: S. Chaudhury, S. Mitra, C. A. Murthy, P. S. Sastry, Sankar K. Pal), pp. 339-344, December 2009. doi:10.1007/978-3-642-11164-8_55

  73. V. B. S. Prasath, A. Singh. Ringing artifact reduction in blind image deblurring and denoising problems by regularization methods. 7th International Conference on Advances in Pattern Recognition (ICAPR), Kolkata, India. Proc. in IEEE Computer Society, pp. 333-336, February 2009. doi:10.1109/ICAPR.2009.57

  74. V. B. S. Prasath, A. Singh. Edge detectors based anisotropic diffusion for enhancement of digital images. 6th Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP), Bhubaneswar, India. Proc. in IEEE Computer Society, pp. 33-38, December 2008. (Best Paper Award) doi:10.1109/ICVGIP.2008.68

  75. V. B. S. Prasath, A. Singh. Controlled inverse diffusion models for image restoration and enhancement. First International Conference on Emerging Trends in Engineering and Technology (ICETET), Nagpur, India. Proc. in IEEE Computer Society, pp. 90-94, July 2008. doi:10.1109/ICETET.2008.69

Preprints: arXiv, bioRχiv, medRχiv, TechRxiv

  1. El Hadji S. Diop, Valerie Burdin, V. B. S. Prasath. Note on the existence of minimizers for variational geometric active contours. arXiv, October 2022. doi:10.48550/arXiv.2210.12773.

  2. S. Bharati, M. R. H. Mondal, P. Podder, V. B. S. Prasath. Federated learning: Applications, challenges and future scopes. arXiv, May 2022. doi:10.48550/arXiv.2205.09513

  3. S. Bharati, M. R. H. Mondal, P. Podder, V. B. S. Prasath. Deep learning for medical image registration: A comprehensive review. arXiv, April 2022. doi:10.48550/arXiv.2204.11341

  4. K. Jin, D. Schnell, G. Li, N. Salomonis, S. Prasath, R. Szczesniak, B. J. Aronow. CellDrift: Inferring perturbation responses in temporally-sampled single cell data. Biorxiv, April 2022. doi:10.1101/2022.04.13.488194

  5. T. A Cazares, F. W. Rizvi, B. Iyer, X. Chen, M. Kotliar, J. A. Wayman, A. Bejjani, O. Donmez, B. Wronowski, S. Parameswaran, L. C. Kottyan, A. Barski, M. T. Weirauch, V. B. S. Prasath, E. R. Miraldi. maxATAC: genome-scale transcription-factor binding prediction from ATAC-seq with deep neural networks. Biorxiv, January 2022. doi:10.1101/2022.01.28.478235

  6. N. Gaddis, J. Fortriede, M. Guo, E. E. Bardes, M. Kouril, S. Tabar, K. Burns, M. E. Ardini-Poleske, S. Loos, D. Schnell, K. Jin, B. Iyer, Y. Du, B.-X. Huo, A. Bhattacharjee, J. Korte, R. Munshi, V. Smith, A. Herbst, J. A. Kitzmiller, G. C. Clair, J. Carson, J. Adkins, E. E. Morrisey, G. S. Pryhuber, R. Misra, J. A. Whitsett, X. Sun, T. Heathorn, B. Paten, V. B. S. Prasath, Y. Xu, T. Tickle, B. J. Aronow, N. Salomonis. LungMAP portal ecosystem: Systems-level exploration of the lung. Biorxiv, December 2021. doi:10.1101/2021.12.05.471312

  7. A. B. Hassanat, A. Albustanji, A. S. Tarawneh, M. Alrashidi, H. Alharbi, M. Alanazi, M. Alghamdi, I. S. Alkhazi, V. B. S. Prasath. Deep learning for identification and face, gender, expression recognition under constraints. arXiv, November 2021. doi:10.48550/arXiv.2111.01930

  8. G. Li, B. Song, H. L. Grimes, V. B. S. Prasath, N. Salomonis. scTriangulate: Decision-level integration of multimodal single-cell data. Biorxiv, October 2021. doi:10.1101/2021.10.16.464640

  9. S. Bharati, P. Podder, M. R. H. Mondal, V. B. S. Prasath. Medical imaging with deep learning for COVID-19 diagnosis: A comprehensive review. arXiv, July 2021. doi:10.48550/arXiv.2107.09602

  10. G. Li, B. Iyer, V. B. S. Prasath, Y. Ni, N. Salomonis. DeepImmuno: Deep learning-empowered prediction and generation of immunogenic peptides for T cell immunity. Biorxiv, December 2020. doi:10.1101/2020.12.24.424262

  11. V. B. S. Prasath, H. A. A. Alfeilat, A. B. A. Hassanat, O. Lasassmeh, A. S. Tarawneh, M. B. Alhasanat, H. S. E. Salman. Distance and similarity measures effect on the performance of k-nearest neighbor classifier - A review. arXiv, August 2018. doi:10.48550/arXiv.1708.04321

  12. H. T. Amaral-Silva, L. O. Murta-Jr, P. M. Azevedo-Marques, L. Wichert-Ana, V. B. S. Prasath, C. Studholme. Validation of Tsallis entropy in inter-modality neuroimage registration. arXiv, November 2016. doi:10.48550/arXiv.1611.01730

  13. V. B. S. Prasath. Polyp detection and segmentation from video capsule endoscopy: A review. arXiv, September 2016. doi:10.48550/arXiv.1609.01915

  14. V. B. S. Prasath, D. Vorotnikov. On time adaptive critical variable exponent vectorial diffusion flows and their applications in image processing. arXiv, March 2016. doi:10.48550/arXiv.1603.06337

  15. J. C. Moreno, V. B. S. Prasath, D. Vorotnikov. Adaptive diffusion constrained total variation scheme with application to ‘cartoon + texture + edge’ image decomposition. Preprint 13-54, Department of Mathematics, University of Coimbra, Portugal, December 2013. arXiv, May 2015. doi:10.48550/arXiv.1505.00866

  16. V. B. S. Prasath, J. C. Moreno. On convergent finite difference schemes for variational - PDE based image processing. arXiv, October 2013. doi:10.48550/arXiv.1310.7443

  17. J. C. Moreno, V. B. S. Prasath, G. Santos, H. Proenca. Robust periocular recognition by fusing sparse representations of color and geometry information. arXiv, September 2013. doi:10.48550/arXiv.1309.2752

  18. V. B. S. Prasath, O. Haddad. Radar shadow detection in SAR images using DEM and projections. arXiv, September 2013. doi:10.48550/arXiv.1309.1830

  19. J. C. Moreno, V. B. S. Prasath, H. Proenca, K. Palaniappan. Brain MRI segmentation with fast and globally convex multiphase active contours. arXiv, August 2013. doi:10.48550/arXiv.1308.6056

  20. V. B. S. Prasath, J. C. Moreno. Color image denoising by chromatic edges based vector valued diffusion. arXiv, April 2013. doi:10.48550/arXiv.1304.5587 Supplementary files, data set containing images, results are available at figshare: doi:10.6084/m9.figshare.658958

  21. V. B. S. Prasath, D. Vorotnikov. On a coupled PDE model for image restoration. arXiv, December 2011. doi:10.48550/arXiv.1112.2904

  22. I. N. Figueiredo, J. C. Moreno, S. Prasath, P. N. Figueiredo. A segmentation model using image gradient information and applications to endoscopic images. September 2010. Preprint 10-30, Department of Mathematics, University of Coimbra, Portugal.

  23. I. N. Figueiredo, S. Prasath, Y.-H. R. Tsai, P. N. Figueiredo. Automatic detection and segmentation of colonic polyps in wireless capsule images. UCLA CAM Report 10-65, September 2010. Also available as Preprint 10-37, Department of Mathematics, University of Coimbra, Portugal.

Abstracts/Posters/Presentations: Trainee's underlined - Please see Student Success (after 2018)


  1. Smruti Deoghare, P. N. T. Nguyen, A. T. Trout, J. R. Dillman, V. B. S. Prasath. Fake it till you make it: Generative AI models for creating realistic artificial pediatric liver ultrasound images. Ultracon, Orlando, FL, USA, March 2023.

  2. J. Dhaliwal, Xiaoxuan Liu, James Reigle, M. Sharma, O. Lopez-Nunez, T. Walters, M. Collins, J. Hyams, I. Siddiqui, L. Denson, A. Jegga, S. Prasath. Development of an optimal machine learning model using treatment naive diagnostic pathology images to predict steroid-free clinical remission at one year in pediatric ulcerative colitis. Crohn's & Colitis Congress, January 2023, Denver, CO, USA.

  3. Xiaoxuan Liu, James Reigle, O. Nunez-Lopez, I. Siddiqui, T. D. Walters, J. S. Hyams, L. A. Denson, S. Prasath, J. Dhaliwal. Machine learning using standard of care pathology images predicts corticosteroid free remission at one year in pediatric ulcerative colitis. NASPGHAN/CPNP/APGNN Annual Meeting, Orlando, FL, USA, October 2022. Poster presentation.

  4. Kang Jin, Daniel Schnell, Guangyuan Li, Nathan Salomonis, V. B. S. Prasath, Rhonda Szczesniak, Bruce Aronow. CellDrift: Inferring perturbation responses in temporally-sampled single cell data. Computational Modeling of Biological Systems (SysMod) Community of Special Interest (COSI), Intelligent Systems for Molecular Biology (ISMB), Madison, WI, USA, July 2022. Poster presentation. (2nd Best Poster Award)

  5. Tareian Cazares, Faiz Rizvi, Balaji Iyer, Xiaoting Chen, Michael Kotliar, Joseph Wayman, Anthony Bejjani, Omer Donmez, Benjamin Wronowski, Sreeja Parameswaran, Leah Kottyan, Artem Barski, Matthew Weirauch, V. B. S. Prasath, Emily Miraldi. maxATAC: Predicting transcription factor binding at disease risk loci from ATAC-seq and DNA sequence with convolutional neural networks. Machine Learning in Computational and Systems Biology (MLCSB) Community of Special Interest (COSI), Intelligent Systems for Molecular Biology (ISMB), Madison, WI, USA, July 2022. Poster presentation.

  6. Xiaoxuan Liu, James Reigle, Erik Drysdale, Oscar Nunez-Lopez, Iram Siddiqui, Thomas D. Walters, Jeffrey S. Hyams, Lee A. Denson, S. Prasath, Jasbir Dhaliwal. One year corticosteroid free remission in pediatric Ulcerative Colitis predicted by machine learning models for histopathological classification. Digestive Disease Week (DDW), San Diego, CA, USA, May 2022. Poster presentation. doi:10.1016/S0016-5085(22)61510-5

  7. Jasbir Dhaliwal, Erik Drysdale, Oscar Nunez-Lopez, Xiaoxuan Liu, James Reigle, Dua Abuquteish, Juan Putra, Jeffrey S. Hyams, S. Prasath, Anna Goldenberg, Thomas D. Walters, Lee A. Denson, Iram Siddiqui. Employing deep learning approaches to automate eosinophilic cell counting in pediatric UC. Digestive Disease Week (DDW), San Diego, CA, USA, May 2022. Poster presentation. doi:10.1016/S0016-5085(22)61512-9

  8. Phuc Ngoc Thien Ngyuen, Smruti Deoghare, Andrew T. Trout, Jonathan R. Dillman, Vasundhara Acharya, V. B. S. Prasath. Fake it till you make it: Synthetic generation of pediatric liver ultrasound images using generative AI models. Undergraduate Research Showcase, University of Cincinnati, April 2022. Poster presentation. Vol. 4 No. 1 (2022): 2022: Undergraduate Scholarly Showcase Proceedings.

  9. Kang Jin, Daniel Schnell, Guangyuan Li, S. Prasath, R. Szczesniak, B. J. Aronow. CellDrift: Identifying cellular and temporal patterns of perturbation responses from single-cell data. Probabilistic Modelling in Genomics (ProbGen), March 2022. Poster presentation.

  10. Xiaoxuan Liu, James Reigle, Erik Drysdale, Oscar Nunez-Lopez, Iram Siddiqui, Thomas Walters, Jeffrey Hyams, Lee Denson, S. Prasath, Jasbir Dhaliwal. Predicting one-year corticosteroid-free remission in pediatric ulcerative colitis with interpretable machine learning. Digestive Health Center (DHC) Annual Scientific Symposium, February 2022.

  11. Qingqing Wu, Jizhou Zhang, Courtney Johnson, Benjamin Weinhaus, Anastasiya Slaughter, Andre Valladares-Nuez, Andre Sherman, Marie-Dominique Filippi, S. Prasath, Sing Sing Way, J. Mathew Koffron, Daniel Lucas-Alcaraz. A durable anatomy with local plasticity enables normal and stress hematopoiesis. 63rd Annual American Society of Hematology (ASH) Meeting. Blood, vol 138 (Supplement 1): 297, November 2021. doi:10.1182/blood-2021-153083

  12. Daiki Katsuma, H. Kawanaka, B. J. Aronow, V. B. S. Prasath. The effects of augmentation using GAN for confocal immunofluorescence image segmentation. 10th International Conference on Informatics, Electronics and Vision (ICIEV), Fukuoka, Japan, August 2021. (Work-in-Progress Best Paper Award)

  13. Guangyuan Li, Song Baobao, H.L. Grimes, V. B. S. Prasath, Nathan Salomonis. scTriangulate - Decision-level integration of multimodal single-cell data. Single Cell Analyses, CSHL, November 2021. Poster presentation.

  14. Tareian Cazares, Faiz Rizvi, Balaji Iyer, Xiaoting Chen, Michael Kotliar, Leah C. Kottyan, Artem Barski, S. Prasath, Matthew T. Weirauch and Emily R. Miraldi. maxATAC: A suite of user-friendly, deep neural network models for transcription factor binding prediction from ATAC-seq. Great Lakes Bioinformatics Conference (GLBIO), May 2021.

  15. Manan Shah, Derek Shu, Yizhao Ni, S. Prasath, Andrew Schapiro, Kevin Dufendach. Feasibility of machine learning to automatically extract PICC tip locations from unstructured radiology reports. Pediatric Academic Societies (PAS) Virtual Meeting, May 2021.

  16. Smruti Deoghare, Ravi Yadav, Leah A. Gilligan, V. B. S. Prasath, Andrew T. Trout, Jonathan R. Dillman. Deep learning predicts ultrasound SWE liver stiffness in children. 106th RSNA Annual Meeting, 29 November - 5 December 2020. Virtual presentation.

  17. Manan Shah, Yizhao Ni, S. Prasath, Andrew Schapiro, Kevin Dufendach. Machine learning to identify peripherally inserted central catheter (PICC) tip position from radiology reports. American Medical Informatics Association (AMIA) Annual Symposium, Chicago, USA, November 2020. Virtual presentation.

  18. Manan Shah, Kevin Dufendach, Andrew Schapiro, Yizhao Ni, S. Prasath. Comparison of various machine learning models to identify peripherally inserted central catheter (PICC) tip position from radiology reports. American Academy of Pediatrics (AAP) Virtual National Conference and Exhibition, San Diego, USA, October 2020. Virtual Presentation. doi:10.1542/peds.147.3_MeetingAbstract.6-a

  19. Alejandra María Casar Berazaluce, Ravi Yadav, Smruti Deoghare, Alexander Gibbons, V. B. S. Prasath, Todd A. Ponsky, B. A. Rymeski. Artificial intelligence driven automated detection of pyloric stenosis in ultrasound imaging. International Pediatric Endosurgery Group (IPEG), Vienna, Austria, June 2020. Virtual presentation.

  20. Faiz Rizvi, Tareian Cazares, Iyer Balaji, Matthew T. Weirauch, Leah Kottyan, S. Prasath, Emily R. Miraldi. Using deep learning to predict cell type-specific chromatin accessibility based on genotype alone. 12th annual RECOMB/ISCB Conference on Regulatory and Systems Genomics, New York, USA, November 2019. Poster presentation.

  21. Balaji Iyer, Smruti Deoghare, Samuel Hacker, Vivek Khandwala, David Wang, Daniel Woo, Achala S. Vagal, V. B. S. Prasath. Predicting ICH patient outcome from brain CT scans using an ensemble deep learning framework. Advanced Computational Neuroscience Network (ACNN), University of Michigan, Ann Arbor, MI, USA, 19 - 20 September, 2019.

  22. Samuel W. Hacker, Balaji Iyer, Smruti Deoghare, Vivek J. Khandwala, David Wang, Daniel Woo, Achala S. Vagal, V. B. S.Prasath. Automated ICH outcome prediction from CT scans by ensemble convolutional neural network architecture. Capstone Poster Symposium, University of Cincinnati, Cincinnati, OH, USA, July 2019. (Second Place Award)

  23. Faiz Rizvi, Tareian Cazares, Joseph Wayman, S. Prasath, E. Miraldi. Flexible, scalable methods to infer transcriptional regulatory networks from single-cell genomics data. CCHMC Developmental Biology Retreat, June 2019.

  24. Faiz Rizvi, Tareian Cazares, Balaji Iyer, Matthew T. Weirauch, Leah Kottyan, S. Prasath, E. Miraldi. Using deep learning to predict cell type-specific chromatin accessibility based on genotype alone. CCHMC Immunology Retreat, April 2019.

  25. Harshith Bondada, V. B. S. Prasath. Mosaicking and blending in large-scale neuroimaging for robust dendrite detection. Carnegie Mellon Forum on Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA, 21 September 2018. Poster presentation.

  26. V. B. S. Prasath. Shape reconstruction for endoscopy with robust perspective shape from shading. Carnegie Mellon Forum on Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA, 21 September 2018. Poster presentation.

  27. Srinivasa Siddhartha Selagamsetty, V. B. S. Prasath. Human epithelial type-2 cell segmentation with deep convolutional neural networks. Carnegie Mellon Forum on Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA, 21 September 2018. Poster presentation.

  28. Asami Yonekura, H. Kawanaka, V. B. S. Prasath, B. J. Aronow, H. Takase. Automatic disease stage classification of brain Glioblastoma Multiforme histopathological images using deep convolutional neural networks. Machine Learning in Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA, 6 - 8 June, 2018. Poster presentation. Available at figshare: doi:10.6084/m9.figshare.6394889

  29. Y. M. Kassim, V. B. S. Prasath, O. Glinskii, V. Glinsky, V. Huxley, K. Palaniappan. Deep CNN segmentation for epifluorescence microscopy images. Machine Learning in Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA, 6 - 8 June, 2018. Poster presentation. Available at figshare: doi:10.6084/m9.figshare.6390590

  30. A. Yonekura, H. Kawanaka, V. B. S. Prasath, B. J. Aronow, H. Takase. Disease stage classification for Glioblastoma Multiforme histopathological images using deep convolutional neural network. Joint 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS), Otsu, Japan, June 2017.

  31. Y. M. Kassim, V. B. S. Prasath, O. Glinskii, V. Glinsky, V. Huxley, K. Palaniappan. Epifluorescence vessel structure segmentation with optimized feature bank and random forests. Missouri Life Sciences Week, 10 April 2017, University of Missouri-Columbia, USA. Poster presentation.

  32. K. Fukuma, H. Kawanaka, S. Prasath, B. Aronow, H. Takase. A proposal of new segmentation method for glioma pathology images. 7th International Workshop on Regional Innovation Studies (IWRIS), Mie, Japan, October 2016. (Outstanding Paper Award)

  33. V. B. S. Prasath, R. Pelapur, Y. M. Kassim, O. Glinskii, V. Glinsky, V. Huxley, K. Palaniappan. Computerized microvascular dura mater structure extraction from confocal microscopy images. Missouri Life Sciences Week, 18 April 2016, University of Missouri-Columbia, USA. Poster presentation.

  34. S. Meena, V. B. S. Prasath, Y. M. Kassim, R. Pelapur, O. Glinskii, V. Glinsky, V. Huxley, K. Palaniappan. Multiquadrics based interactive segmentation of dura mater microvasculature from epifluorescence images. Missouri Life Sciences Week, 18 April 2016, University of Missouri-Columbia, USA. Poster presentation.

  35. Y. M. Kassim, V. B. S. Prasath, R. Pelapur, O. Glinskii, V. Glinsky, V. Huxley, K. Palaniappan. Improved random forests for dura mater microvasculature segmentation using epifluorescence images. Missouri Life Sciences Week, 18 April 2016, University of Missouri-Columbia, USA. Poster presentation.

  36. V. B. S. Prasath, R. Pelapur, Y. M. Kassim, S. Meena, A. Palaniappan, U. Sampathkumar, O. Glinskii, V. Glinsky, V. Huxley, K. Palaniappan. Computerized microvasculature dura mater structure extraction and analysis of fluorescence microscopy imagery. Missouri Informatics Symposium, 4 April 2016, University of Missouri-Columbia, USA. Poster presentation. Available at figshare: doi:10.6084/m9.figshare.3146269.v1

  37. K. Fukuma, H. Kawanaka, S. Prasath, B. Aronow, H. Takase. A study on nuclei segmentation accuracy for tissue specimen analysis of brain histopathology images. 7th International Workshop on Regional Innovation Studies (IWRIS), Mie, Japan, pp. 21–24, 2015.

  38. V. B. S. Prasath, R. Pelapur, O. Glinskii, V. Glinsky, V. Huxley, K. Palaniappan. Multiscale anisotropic tensor filtering of fluorescence microscopy for denoising vasculature. Missouri Life Sciences Week, 13 April 2015, University of Missouri-Columbia, USA. Poster presentation. Available at figshare: doi:10.6084/m9.figshare.1309773

  39. V. B. S. Prasath. Shearlet active contours. February Fourier Talks (FFT), February 2015, University of Maryland, MD, USA. Poster presentation.

  40. V. B. S. Prasath, R. Pelapur, K. Palaniappan. Multi-scale directional vesselness stamping based segmentation for polyps from wireless capsule endoscopy. 36th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE EMBC), Chicago, IL, USA, August 2014. Late breaking research posters paper. Also in: Missouri Life Sciences Week, 13 April 2015. Poster presentation. Available at figshare: doi:10.6084/m9.figshare.1087896

  41. V. B. S. Prasath, F. Bunyak, P. Dale, S. R. Frazier, K. Palaniappan. Stromal-epithelial separation for breast cancer tissue microarrays from histopathology. Missouri Life Sciences Week, 14 April 2014, University of Missouri-Columbia, USA. Poster presentation. Available at figshare: doi:10.6084/m9.figshare.997514

  42. V. B. S. Prasath. Geometric separation using Shearlets: Application to road line extraction and vessel segmentation. February Fourier Talks (FFT), February 2014, University of Maryland, MD, USA. Poster presentation.

  43. V. B. S. Prasath, J. C. Moreno. On convergent finite difference schemes for variational PDE based image processing. First Central Region Conference on Numerical Analysis and Dynamical Systems, May 2013, Department of Mathematics, University of Kansas, Lawrence, KS, USA. Poster presentation. Available at figshare: doi:10.6084/m9.figshare.695306

  44. V. B. S. Prasath, O. Haddad, F. Bunyak, R. Singh, O. Glinskii, V. Glinsky, V. Huxley, K. Palaniappan. Computerized Dura Mater Laminae analysis of fluorescence microscopy images. Missouri Life Sciences Week, 15 April 2013, University of Missouri-Columbia, USA. Also in: Graduate Summer School, IPAM, UCLA, 26 July 2013. Poster presentation. Available at figshare: doi:10.6084/m9.figshare.661533

  45. V. B. S. Prasath. Efficient splitting techniques for adaptive total variation based image decomposition. February Fourier Talks (FFT), February 2013, University of Maryland, USA. Poster presentation.

  46. D. Vorotnikov, V. B. S. Prasath. Global dissipative solutions of a coupled problem for image restoration. Workshop on Nonlinear Partial Differential Equations (on the occasion of the sixtieth birthday of Patrizia Pucci), 28 May - 1 June 2012, Perugia, Italy. Poster presentation.

  47. I. N. Figueiredo, V. B. S. Prasath, Y.-H. R. Tsai, P. N. Figueiredo. Human colorectal polyp detection from wireless capsule endoscopy images. 7th International Congress on Industrial and Applied Mathematics (ICIAM), Vancouver, BC, Canada, July 2011.

  48. J. C. Moreno, I. N. Figueiredo, V. B. S. Prasath. Texture image segmentation using higher order derivatives. Congress on Numerical Methods in Engineering (CMNE), Coimbra, Portugal, June 2011. Full paper appeared in the conference CD-ROM proceedings.

  49. V. B. S. Prasath, I. N. Figueiredo, P. N. Figueiredo. Colonic mucosa detection in wireless capsule endoscopic images and videos. Congress on Numerical Methods in Engineering (CMNE), Coimbra, Portugal, June 2011. Full paper appeared in the conference CD-ROM proceedings.

  50. I. N. Figueiredo, V. B. S. Prasath, Y.-H. R. Tsai, P. N. Figueiredo. Geometry based polyp detection in wireless capsule endoscopy images. IMA Annual Program Year Workshop: Computing in Image Processing, Computer Graphics, Virtual Surgery, and Sports, IMA - University of Minnesota, USA, March 2011. Poster presentation.

  51. J. C. Moreno, V. B. S. Prasath, I. N. Figueiredo, G. Stadler. A new segmentation model for endoscopic human colonic aberrant crypt foci. Summer School and Work- shop on Imaging Sciences and Medical Imaging (ISMA), Coimbra, Portugal, June 2010. Poster presentation.

  52. V. B. S. Prasath. Nonlinear partial differential equations in computer vision. International Conference on Mathematics and Computer Science (ICMCS), Chennai, India, January 2009.

  53. V. B. S. Prasath. Robust M-estimators in early computer vision problems. International Conference On New Trends in Statistics and Optimization (ICONTSO), Kashmir, India, October 2008.

Book Chapters:


  1. M. M. S. Missen, M. Coustaty, H. Asmat, A. Firdous, N. Akhtar, M. Akram, V. B. S. Prasath. 2Es of TIS: A review of information exchange and extraction in tourism information systems. Recommender System with Machine Learning and Artificial Intelligence: Practical Tools and Applications in Medical and Agricultural and Other Industries (eds.: S. N. Mohanty et al.), 45-70, 2020. Invited paper. doi:10.1002/9781119711582.ch3

  2. N. Iqbal, M. M. S. Missen, N. Salamat, V. B. S. Prasath. On video based human abnormal activity detection with histogram of oriented gradients. Handbook of Multimedia Information Security: Techniques and Applications (eds.: A. K. Singh, A. Mohan), 431-438, Springer, Berlin, July 2019. Invited paper. doi:10.1007/978-3-030-15887-3_21

  3. M. F. Ferdous, P. Tiwari, V. B. S. Prasath. Design and construction of a light-detecting and obstacle-sensing robot for IoT - Preliminary feasibility study. Handbook of Internet of Things and Big Data (eds.: V. K. Solanki, V. G. Diaz, P. J. Davim), 59-79, CRC Press, Taylor & Francis, USA, March 2019. Invited paper. doi:10.1201/9780429053290-3

Student Theses:


  1. Xiaoxuan Liu. Interpretable Machine Learning for Histopathology Images Classification in Pediatric Ulcerative Colitis Remission Prediction. MS Thesis, Department of Computer Science, University of Cincinnati, USA, 2022.

  2. Srinivasa Siddhartha Selagamsetty. Exploring a Methodology for Segmenting Biomedical Images using Deep Learning. MS Thesis, Electrical Engineering and Computer Science, University of Cincinnati, USA, 2019.

  3. Harshith Bondada. Retinal Vessel Segmentation on Ultra Wide-field Fluorescein Angiography Images. MS Thesis, Electrical Engineering and Computer Science, University of Cincinnati, USA, 2019.